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ABSTRACT Motivated by the recent explosion of interest around blockchains, we examine whether they
make a good fit for the Internet of Things (IoT) sector. Blockchains allow us to have a distributed peer-to-peer
network where non-trusting members can interact with each other without a trusted intermediary, in a
verifiable manner. We review how this mechanism works and also look into smart contracts—scripts that
reside on the blockchain that allow for the automation of multi-step processes. We then move into the
IoT domain, and describe how a blockchain-IoT combination: 1) facilitates the sharing of services and
resources leading to the creation of a marketplace of services between devices and 2) allows us to automate
in a cryptographically verifiable manner several existing, time-consuming workflows. We also point out
certain issues that should be considered before the deployment of a blockchain network in an IoT setting:
from transactional privacy to the expected value of the digitized assets traded on the network. Wherever
applicable, we identify solutions and workarounds. Our conclusion is that the blockchain-IoT combination
is powerful and can cause significant transformations across several industries, paving the way for new
business models and novel, distributed applications.

INDEX TERMS Blockchain, distributed systems, internet of things.

I. INTRODUCTION
Blockchains have recently attracted the interest of stakehold-
ers across a wide span of industries: from finance [1] and
healthcare [2], [3], to utilities [4], real estate [5], [6], and
the government sector [7]. The reason for this explosion of
interest: With a blockchain in place, applications that could
previously run only through a trusted intermediary, can now
operate in a decentralized fashion, without the need for a
central authority, and achieve the same functionality with
the same amount of certainty. This was simply not possible
before.

We say that the blockchain enables trustless networks,
because the parties can transact even though they do not trust
each other. The absence of a trusted intermediarymeans faster
reconciliation between transacting parties. The heavy use of
cryptography, a key characteristic of blockchain networks,
brings authoritativeness behind all the interactions in the net-
work. Smart contracts –self-executing scripts that reside on
the blockchain– integrate these concepts and allow for proper,
distributed, heavily automated workflows. This should make
blockchains enticing to researchers and developers working
in the Internet of Things (IoT) domain.

Of course the transition to a decentralized network may not
always make sense. On top of that, even if such a transition

is desirable, the application’s requirements may be such that
a blockchain-based network cannot fulfil them. Blockchains
and smart contracts bring a slew of advantages to the table, but
as we will see, they also come with a bag of disadvantages.

The goal of this work is to provide a detailed descrip-
tion of how blockchains and smart contracts work, to iden-
tify the pros and cons that their introduction brings to a
system, and highlight the ways the blockchains and IoT
can be used together. This will allow the reader to identify
potentially new use cases for their IoT work, and also make
educated decisions when integrating a blockchain in their
project.

The paper is structured as follows. In Section II we examine
what a blockchain is, how a blockchain network operates,
and how smart contracts allow us to radically redefine how
interactions between transacting parties on a network can
be set up and automated. We end the section with a tax-
onomy for blockchains. In Section III, we look into how
IoT and blockchains can be used together, and highlight
existing IoT-on-the-blockchain applications. We note down
the issues that the IoT developer/researcher would need to
keep in mind when deploying a blockchain-based solution
for their project in Section IV, and present our conclusions
in Section V.
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II. PRELIMINARIES
A. HOW BLOCKCHAINS WORK
A blockchain is a distributed data structure that is repli-
cated and shared among the members of a network. It was
introduced with Bitcoin [8] to solve the double-spending
problem [9]. As a result of how the nodes on the Bitcoin
network (the so-called miners) append validated, mutually
agreed-upon transactions to it, the Bitcoin blockchain houses
the authoritative ledger of transactions that establishes who
owns what [10].

FIGURE 1. Each block in the chain carries a list of a transactions and a
hash to the previous block. The exception to this is the first block of the
chain (not pictured), called genesis, which is common to all clients in a
blockchain network and has no parent.

However a blockchain can stand on its own just fine – no
cryptocurrency needed [11]. Think of the blockchain as a log
whose records are batched into timestamped blocks. Each
block is identified by its cryptographic hash.1 Each block
references the hash of the block that came before it. This
establishes a link between the blocks, thus creating a chain
of blocks, or blockchain - see Figure 1. Any node with access
to this ordered, back-linked list of blocks [12] can read it and
figure out what is the world state of the data [10] that is being
exchanged on the network.

We get a better understanding of how a blockchain works,
when we examine how a blockchain network runs. This is a
set of nodes (clients) that operate on the same blockchain via
the copy each one holds. A node can generally act as an entry
point for several different blockchain users into the network,
but for simplicity, we assume that each user transacts on the
network via their own node. These nodes form a peer-to-peer
network where:

1) Users interact with the blockchain via a pair of pri-
vate/public keys [13]. They use their private key to sign
their own transactions, and they are addressable on the
network via their public key.2 The use of asymmetric
cryptography brings authentication, integrity, and non-
repudiation into the network. Every signed transaction
is broadcasted by a user’s node to its one-hop peers.

2) The neighboring peers make sure this incoming trans-
action is valid before relaying it any further; invalid
transactions are discarded. Eventually this transaction
is spread across the entire network.

3) The transactions that have been collected and validated
by the network using the process above during an
agreed-upon time interval, are ordered and packaged
into a timestamped candidate block. This is a process

1Whether the hash is generated over the block’s contents or its header, as
is the case in Bitcoin for instance, is a design choice.

2Depending on the implementation, the address can be the public key itself
or (usually) a hash of it.

called mining. The mining node broadcasts this block
back to the network. (The choice of the mining node
and the contents of the block depend on the consen-
sus mechanism that the network employs. Refer to
Section II-B for more information.)

4) The nodes verify that the suggested block (a) contains
valid transactions, and (b) references via hash the cor-
rect previous block on their chain. If that is the case,
they add the block to their chain, and apply the trans-
actions it contains to update their world view. If that
is not the case, the proposed block is discarded. This
marks the end of a round.

Note that this is a repeating process.
When we talk about transaction validation in step #2,

the natural question is: what constitutes a valid transaction?
We need to remember that in a blockchain network what
we have essentially is a set of non-trusting writers sharing a
database with no trusted middleman [14]. In order to prevent
chaos from erupting in this distributed environment, and in
order to help the network reach a common global view of
the world (i.e. reach consensus), each blockchain network
needs to establish certain rules that each database transaction
should conform to. These application-dependent rules are
programmed into each blockchain client, which then uses
them to decide whether an incoming transaction is valid, and
consequently whether it should be relayed to the network or
not. In the simplified ‘‘shared database’’ model we present
here, let us assume that each row of the database is mapped to
a public key (or address) that controls who can edit it. A valid
transaction then is one that attempts tomodify a row forwhich
the corresponding signature is present.

When each node in the network follows the steps listed
above, the shared blockchain it operates on becomes an
authenticated and timestamped record of the network’s activ-
ity [10]. Note how the nodes do not have to trust any other
entity, giving rise to the term trustless environment; instead,
as noted in [12], trust is achieved as an emergent prop-
erty from the interactions of different participants in the
system.

The above is what happens from a high-level view and
in the general case. Things get more interesting when we
examine how blockchains can be used for the transfer and
tracking of assets (Section II-C), or to run code (Section II-D).

B. REACHING CONSENSUS ON THE NETWORK
The nodes need to agree on the transactions and the order in
which these are listed on the newly-mined block. Otherwise,
the individual copies of the blockchain will diverge and we
will end up with forks; the nodes will have a different view of
theworld state and the networkwill no longer be able tomain-
tain a unique authoritative chronology [14] (i.e. blockchain)
unless this fork is resolved.

A distributed consensus mechanism is therefore needed in
every blockchain network in order to achieve that. As we
wrote in Section II-A, the type of consensus mechanism used
depends on the type of the blockchain network and the attack
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vector that the network operator adopts. (The ‘‘it depends’’
answer will unfortunately be a recurring theme throughout
this work. It may make things less straightforward to explain,
but it also speaks to the versatility of the blockchain to adapt
in a number of situations.)

In an ideal scenario, all validating nodes would vote on
the order of transactions for the next block, and we would
go with what the majority decided. In an open network that
anyone can join though, this would be catastrophic because of
the Sybil attack [15]: a single entity could join with multiple
identities, get multiple votes, and thus influence the network
to favor this entity’s interests. In other words, aminority could
seize control of the network.

Bitcoin works around this problem bymakingmining com-
putationally ‘‘expensive’’; impersonating multiple entities on
the network will not help, as the computing resources of any
single entity are limited. Specifically, any node can have their
assembled block be the next mined block on the network,
if they can find the right random number (nonce) in that
block’s header that will make the SHA-256^2 [16], [17]
hash of the header to have the amount of leading zeroes3

that the network expects [12]. Any node that can solve this
puzzle, has generated the so-called proof-of-work (PoW) and
gets to shape the chain’s next block [8]. Since a one-way
cryptographic hash functions is involved, any other node can
easily verify that the given answer satisfies the requirement
(and adopt this block for its blockchain if that’s the case), but
cannot do the opposite; i.e. guess from the result requirement
what the input should be.

Note that a fork may still happen on the network, when
two competing nodes mine blocks almost simultaneously.
Such forks are usually resolved automatically by the next
block; the proof-of-work mechanism dictates that the nodes
should adopt the fork that carries the greatest amount of work,
and it is unlikely that the two competing forks will generate
the next block simultaneously. Whichever fork grows longer
first will be adopted by the nodes as the correct one. This
allows the network to reach consensus on the proper order of
events again.

Other hashing algorithms can be used for PoW besides
SHA-256, such as Blake-256 [18] and scrypt [19] (used
in Litecoin [20]). There are also mechanisms that combine
several of these algorithms together, such as Myriad [21].
Proof-of-stake (PoS) is an alternative to proof-of-work that

requires far fewer CPU computations for mining. In PoS, the
chances of a node mining the next block are proportional to
that node’s balance.4 PoS schemes have their own strengths

3Note that the more leading zeroes are required, the more difficult the
solution of this puzzle is. We call this an increase of the target. The network
adjusts the level of difficulty every 2,016 blocks to account for changes in
the network’s CPU power, and to make sure that blocks are generated at a
steady rate.

4Note that both PoW and PoS effectively require a blockchain that sup-
ports cryptocurrency; the former in order to incentivize the miners to run the
power-hungly (and thus, costly) hash calculations needed to mine a block,
and the latter in order get the miners to have their (crypto-)money at stake
when mining.

and weaknesses [22], and actual implementations are proving
to be quite complex [23].

A detailed description and evaluation of proof-of-X mech-
anisms can be found in [24].

In private networks however, where the participants are
whitelisted, costly consensus mechanisms such as proof-of-
work are not needed; the risk of a Sybil attack is not there [25].
This practically removes the need for an economic incentive
for mining, and gives us a wider range of consensus protocols
to pick from.
Practical Byzantine Fault Tolerance (PBFT) [26] is such

an algorithm. It provides a solution to the Byzantine Gen-
erals Problem [27] that works in asynchronous enviroments
like the Internet. (Bitcoin, via the mechanism described
above, also provides a practical solution to the same prob-
lem [24].) It involves a three-phase protocol and the notion of
a ‘‘primary’’ (leader) node that acts as the block miner; the
leader can be changed by the rest of the network via a so-
called ‘‘view-change’’ voting mechanism, if it crashes or if
it exhibits arbitrary behavior (Byzantine faults). PBFT works
on the assumption that less than one third of the nodes are
faulty (f ), which is why say that it requires at least5 3f + 1
nodes.
Tangaroa, a Byzantine Fault Tolerant (BFT) variant of the

popular Raft algorithm [30], is used as a consensus mecha-
nism in Juno [31]. Tendermint [32] provides BFT tolerance
and is similar to the PBFT algorithm; however it provides a
tighter guarantee with regards to the results returned to the
client when more than one third of the nodes are faulty, and
allows for a dynamically changing set of set of validators, and
leaders that can be rotated in a round-robin manner, among
other optimizations [33].

Ripple’s [34] consensus algorithm [35] uses ‘‘collectively-
trusted subnetworks’’ called ‘‘Unique Node Lists’’ (UNL)
to deal with the high latency that usually characterizes
BFT-tolerant systems. A node needs to query only its own
UNL, instead of the whole network, in order to reach consen-
sus. It can tolerate less than one fifth of its nodes being faulty
(5f + 1 resilience).

In the mining diversity [36] scheme (used in Multi-
Chain [37]), whitelisted miners add blocks to the chain in a
round-robin manner, with some degree of leniency to allow
for malfunctioning nodes [14]. A network parameter called
‘‘mining diversity’’ is used to calculate the number of blocks
that a miner should wait for before attempting to mine again
(otherwise its suggested block will be rejected). A low value
of the mining diversity parameter means that fewer miners
need to collude in order to take over the network; if the
number of colluding miners is equal to or bigger than the
number of blocks each miner should wait before attempting
to mine again, then there is a probability that this will happen.
Conversely, a higher value of the mining diversity parameter

5If more than 3f + 1 nodes are used, then the quorum thresholds listed
in [26] may lead to forks. Instead, the bounds indicated in [28] should be
used. This is for instance the implementation adopted in the HyperLedger
Fabric project [29].

2294 VOLUME 4, 2016



K. Christidis, M. Devetsiokiotis: Blockchains and Smart Contracts for the IoT

ensures that more permitted miners are included in the rota-
tion, thus making the network take-over by a minority more
difficult.
Sieve [38], a mechanism used in the HyperLedger

Fabric project, augments the PBFT algorithm [26] by adding
speculative execution and verification phases, inspired by the
execute-verify architecture presented in [39]. This allows the
network to detect and filter out possible non-deterministic
requests, and also achieve consensus on the output state of
the suggested transactions (in addition to consensus on their
input order).

Reference [40] contrasts proof-of-work and BFT consen-
sus protocols, and offers an excellent overview of the state of
the art with a focus on scalability.

Note that regardless of the consensus mechanism used, the
miners in a blockchain network ‘‘have far less power than the
owner of a traditional centralized database since they cannot
fake transactions’’ [14].

C. TRANSFERING DIGITAL ASSETS ON A BLOCKCHAIN
In order to show how an asset transfer works, it is best to
consider a simplified example from the banking world. Imag-
ine a bank’s (centralized) database that tracks the aggregate
balances of each customer. We are basically looking at a
table with three columns: ‘‘asset type’’, ‘‘owner’’ (‘‘counter-
party’’ [41]), and ‘‘quantity’’ (‘‘amount’’). For example, a row
in that table with ‘‘USD’’, ‘‘Alice’’, ‘‘10’’ identifies Alice as
having $10 deposited in that bank. Bob has an account in the
same bank with $0 in it. When Alice transfers $2 to Bob’s
account, the ‘‘quantity’’ of the USD/Alice (asset type/owner)
row gets updated to $8, and that of USD/Bob now reads $2.
An asset ($2 USD), or rather the digital representation of this
asset, was transferred between two entities via a transforma-
tion of the appropriate rows in the database.

This transfer of digital tokenized assets can be achieved
easily and in a cryptographically verifiable manner using a
blockchain network that employs the Bitcoin transactional
model.6 Consider again the model of a database that is
shared by non-trusting writers in a trustless environment, as
in Section II-A. Each row carries the same fields as in the
banking example above, with the difference that the ‘‘owner’’
field now holds the public key of the user that is allowed
to edit the row. Assume that the database shows that Alice
owns 10 units of asset X. (We will get to how this truth
was established, i.e. how these assets were generated shortly.)
That is, a row in that database, carries Alice’s public key in
the ‘‘owner’’ column, and the values ‘‘X’’ and ‘‘10’’ in the
‘‘asset type’’ and ‘‘quantity’’ columns respectively. Assume
that Alice knows Bob’s public key. How does Alice transfer
2 units of X to Bob? She signs a transaction that modifies
her row, decreasing the value of X by 2, and creates a new
row, whose ‘‘owner’’ is set to Bob’s public key, and whose

6As we will see later on, it can also be implemented with a smart contract,
but with a few key differences, especially when it comes to performance;
see Section II-E.

FIGURE 2. A transaction that transfers a tokenized asset (X) from Alice to
Bob. Alice signed her input, and created an output locked against Bob’s
public key, so that only Bob can spend it.

‘‘asset type’’ and ‘‘value’’ fields are set to ‘‘X’’ and ‘‘2’’
respectively.

Alice transferred 2 units of X to Bob by creating a new row
with that information and assigning it to him; see Figure 2.
(In fact, Alice’s transaction also deleted her own row, created
a new row assigned to one of her public keys, and moved
the 8 remaining units of X she holds there. That is done in
order to control concurrency –see Section II-E– and prevent
conflicts between concurrent write operations in the system;
rows are not modified, instead they are deleted and new rows
are created with the updated values [11].)

Bob’s new balance of asset ‘‘X’’ can be calculated by
aggregating all the rows in the database that correspond to
his public keys, and whose ‘‘asset type’’ is set to ‘‘X’’. Same
goes for Alice.

Some of the validation checks that we would encode into
the nodes of a blockchain network that is set up for such asset
transfers would be:
• Does the proposed transaction address an existing row?
• Is it properly signed so as to delete that row (or rows)?
• Has this row been addressed (used) by a previous vali-
dated transaction? An asset cannot be spent twice.

• Does it transfer the right amounts to new rows? For
example, if the row the transaction reads ‘‘10 units of
X’’, an attempted transfer of ‘‘2 units of X’’ (to Bob) and
‘‘9 units of X’’ (back to Alice) should fail. Same goes for
an attempted transfer of, say, ‘‘10 units of Y’’. The sum
of inputs should equal the sum of outputs, i.e. a transfer
should not increase the total quantity of an asset type.

Note that a transaction can address several existing rows
instead of just one, i.e. transfer assets scattered over the
database, as long as it is properly signed to access them. These
existing, not-yet-deleted rows are called unspent transaction
outputs (UTXO) in Bitcoin; they were created by earlier
transactions in the system. The UTXO that a transaction
consumes are called transaction inputs; the UTXO that a
transaction creates are called transaction outputs [12].

A transaction then basically deletes a set of rows (UTXO)
and creates a set of new rows (UTXO) in the database
(see Figure 3 for an example).

One outstanding question from the description above is:
how do we generate assets and introduce them in the chain?
Before we get to the state of Alice having 10 units of X,
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FIGURE 3. Transaction n spends the second UTXO that transaction b (not
pictured) created (b#2), and generates two new outputs (n#1, and n#2),
spent by transactions n + 3 and n + 9 respectively. A similar process
applies to every transaction in the network. Transactions are therefore
linked to each other and allow for easy provenance tracking.

these 10 units of X have to come from somewhere. The
answer is that it depends on the network and its purpose.
Generally, a properly-authorized node uses a special type of
transaction to introduce an asset (or new units of the asset)
into the network.

For example, assume a private blockchain network
between Alice, Bob, and Carol. Carol sets this up using
MultiChain [37], a blockchain platform that assigns permis-
sions (can connect to the network, can transact to the network,
can issue on the network) to public keys. Carol configures
the network so that her public key can issue assets on the
network. She invites Alice and Bob to join; both of them are
OK with Carol’s ability to issue assets on the chain. All of
them have a pair of private and public keys. Carol submits a
signed transaction that generates 10 units of X. The nodes on
the network consider this transaction valid, since her public
key is permissioned appropriately. Carol then transfers these
newly-generated units of X to Alice, which brings us to Alice
having 10 units of X.

In the case of Bitcoin, new bitcoins are introduced into the
network with every mined block: The mining node includes
a so-called coinbase transaction [42] in the block of transac-
tions it broadcasts to the network. This coinbase transaction
has no inputs and rewards the mining node with a pre-
determined (by the network) amount of bitcoins.7

The key thing to keep in mind is this: if you have a set
of users (a) who want to trade digital tokens, and (b) have
agreed on how these tokens are generated, then a blockchain
network is an ideal tool to use both for exchanging these
tokens, and tracking who has what. No middleman is needed
to facilitate the exchanges cause every node on the network
runs the the necessary checks and reaches consensus on the
accepted result. Asset tracking comes out-of-the-box since
every node has access to the agreed set of cryptographically
verifiable transactions on the blockchain.

D. HOW SMART CONTRACTS WORK
Nick Szabo introduced this concept in 1994 and defined a
smart contract as ‘‘a computerized transaction protocol that
executes the terms of a contract’’ [44]. Szabo suggested

7This reward is halved every 210,000 blocks [43].

translating contractual clauses (collateral, bonding, etc.) into
code, and embedding them into property (hardware, or soft-
ware) that can self-enforce them [45], so as to minimize the
need for trusted intermediaries between transacting parties,
and the occurence of malicious or accidental exceptions.

Within the blockchain context, smart contracts are scripts
stored on the blockchain. (They can be thought of as roughly
analogous to stored procedures in relational database man-
agement systems [46].) Since they reside on the chain, they
have a unique address.We trigger a smart contract by address-
ing a transaction to it. It then executes independently and
automatically in a prescribedmanner on every node in the net-
work, according to the data that was included in the triggering
transaction. (This implies that every node in a smart contract-
enabled blockchain is running a virtual machine (VM), and
that the blockchain network acts as a distributed VM.)

Smart contracts allow us to have general purpose computa-
tions occur on the chain. Where they excel however, is when
they are tasked with managing data-driven interactions [47]
between entities on the network. Let us unpack this state-
ment with an example. Consider a blockchain network where
Alice, Bob, and Carol participate, and where digital assets of
type X and Y are being traded. Bob deploys a smart contract
on the network that defines: (a) a ‘‘deposit’’ function allowing
him to deposit units of X into the contract, (b) a ‘‘trade’’
function that sends back 1 unit of X (from the contract’s
own deposits) for every 5 units of Y it receives, and (c) a
‘‘withdraw’’ function that allows Bob to withdraw all the
assets that the contract holds.

Note that the ‘‘deposit’’ and ‘‘withdraw’’ functions are
written so that only Bob (via his key) can call them, because
this is what Bob decided, and also what makes sense for our
example; they could have been written so that they can be
called successfully by any user on the network.

Bob sends a transaction to that smart contract’s address,
calling its ‘‘deposit’’ function and moving 3 units of X to
the contract. This transaction is recorded on the blockchain.
Alice, who owns 12 units of Y, then sends a transaction that
moves 10 units of Y to the contract’s ‘‘trade’’ function, and
gets back 2 units of X. This transaction is also recorded
on the blockchain. Bob then sends a signed transaction to
the contract’s ‘‘withdraw’’ function. The contract checks the
signature to make sure the withdrawal is initiated by the
contract’s owner, and transfers all of its deposits (1 unit of X,
and 10 units of Y) back to Bob.

Let us observe the following:
1) The contract has its own state and can take custody over

assets on the blockchain [48]. We say that a contact has
its own account on the blockchain, and the blockchain
supports an account-based model [49]. In the example
above, it can hold assets X and Y. (If we go back
to the shared database model, a contract is a separate
‘‘user’’/entity that can own, delete, and create rows.)

2) The contract allows us to express business logic in
code; ‘‘will trade 1 unit of X for every 5 units of Y
received’’.
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3) A properly written smart contract should describe all
possible outcomes of the contract. For instance, the
‘‘trade’’ function above may be written so as to reject
offers that bring in quantities of Y that are not multiples
of 5; i.e. an offer of 12 units of Ywill be rejected. Or the
function may be written so as to parse the incoming
offer as the biggest multiple of 5 (that will be traded
without issues) and a remainder (that will be returned).
An offer of 12 units of Y then, would return 2 units of X
and 2 units Y to the sender.

4) The relationship that Bob wishes to establish with his
counterparties is one driven by data [47]. A transaction
after all is a signed data structure indicating a trans-
fer of value [12]. Bob deploys a smart contract that
effectively says, ‘‘if you send this contract this data
(5 units of Y), here’s how it will respond (1 unit of X)’’.

5) A smart contract is triggered by messages/transactions
sent to its address.

6) A smart contract is deterministic; the same input
will always produce the same output. If one writes
a non-deterministic contract, when it is triggered it
will execute on every node on the network and may
return different random results, thus preventing the
network from reaching consensus on its execution
result. In a properly built blockchain platform, writ-
ing non-deterministic smart contracts is either impos-
sible (by forcing the contract developers to use a
programming language that does not have any non-
deterministic constructs [50]), or it is possible but an
attempt to deploy such a contract on the network will
be rejected [38].

7) A smart contract resides on the blockchain, and as such
its code can be inspected by every network participant.

8) Since all the interactions with a contract occur via
signed messages on the blockchain, all the network
participants get a cryptographically verifiable trace of
the contract’s operations.

A blockchain that supports Bitcoin-style transactions
enables asset transfers between counterparties that do not
trust each other. A blockchain that supports smart contracts
however, takes this further and allows for multi-step pro-
cesses (or more generally: interactions) to occur between
mutually distrustful counterparties. The transacting entities
get to (a) inspect the code and identify its outcomes before
deciding to engage with the contract, (b) have certainty of
execution since the code is already deployed on a network
that neither of them controls fully, and (c) have verifiability
over the process since all the interactions are digitally signed.
The possibility of a dispute is eliminated (when all possible
outcomes are accounted for) since the participants cannot
disagree over the final outcome of this verifiable process they
engaged in.

Smart contracts operate as autonomous actors, whose
behavior is completely predictable. As such they can be
trusted to drive forward any on-chain logic that can be
expressed as a function of on-chain data inputs, provided that

the data they need to manage is within their own reach (in the
example above, the contract wouldn’t be able to trade assets
that it did not own).

We close this section by noting that smart contracts also
give rise to the concept of ‘‘decentralized autonomous organi-
zations’’ (DAOs), entities on the blockchain whose behavior
may be modified, if a certain process that is encoded in
the contract is followed. As described in [51], the simplest
example is that of a smart contract that calls another contract
by address to perform its main function. This address resides
on the mutable part of the contract’s internal database. The
contract also carries a list of members, addresses (public
keys) that get to vote on its behavior. A rule can be included
in the contract so that if a majority of those voters vote in a
certain way, the contract will modify its behavior by calling
the address that received the majority of the votes to execute
its main function.

E. A BLOCKCHAIN TAXONOMY
There are several ways to categorize a blockchain network.
We highlight the following, inline with the optimization/
permission spectrums presented in [10]:
• Who has access to the network: If anyone can join,
we are dealing with a public or permission-less net-
work, whereas if we have a whitelist in place, we
are dealing with a private or permissioned network.
The answer to this question decides what the consen-
sus mechanism should be II-B. Because of the Sybil
attack [15], consensus in public networks is costly
and an economic incentive to the miners (in the form
of cryptocurrency) is usually needed. Private networks
make more sense for stakeholders who wish to operate
in a controlled, regulated environment, or who wish
a higher throughput than what a public network can
offer.

• Who can transact or mine: All participants may not
be allowed to transact [52], deploy smart contracts, or
participate in the mining process [29]. This filter usually
applies only to private networks, where all the partici-
pants are identifiable.

• Bitcoin-style transactions (UTXO model) or smart
contracts (account-based model): As explained in
Section II-C, blockchains that support the UTXOmodel
are uniquely suited for the transfer of and tracking of
digital tokenized assets, whereas blockchains that sup-
port the account-based model (Section II-D) give us the
means to run arbitrary logic and establish verifiable
multi-step processes. This support for arbitrary logic
however comes at a severe cost when it comes to concur-
rent execution and transaction throughput [53]. Before
the VM of a node processes the incoming message
to a smart contract, it cannot tell how it will affect
the contract’s internal state, or whether it will trigger
another contract in the system, so it cannot run all the
transactions of a block in parallel. In the UTXO model
though, every transaction explicitly identifies its inputs
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and outputs; if there is no dependency between the out-
puts and the inputs of transactions in the block (i.e. as
long as a transaction does not attempt to spend the out-
put that another transaction in the same block creates),
the order of execution does not matter and all of these
transactions can be processed by the block in parallel.

For other attempts at a categorization of blockchains and
distributed ledgers, see [7] and [25]. At any rate, it is
key to remember that –regardless of specific configuration–
a blockchain gives us the following benefits out of
the box:
• A robust, truly distributed peer-to-peer system that is
tolerant of node failures.

• A network that can identify conflicts and forks and
resolve them automatically so as to converge to a single,
globally accepted view of events.

• Transparency, verifiability, auditability on the network’s
activity. We get verifiable processes, whether these con-
cern the exchange and tracking of a digital asset, or a
data-driven interaction between parties. Every transac-
tion presents a publicly auditable proof that it was autho-
rized to interact with the system [11]. Eliminates the
possibility of disputes, makes reconciliation redundant.

• As noted in [54]: ‘‘A method for tagging different pieces
of information as belonging to different participants, and
enforcing this form of data ownership without a central
authority.’’

• A system that allows non-trusting participants to interact
with each other in a predictable, certain manner.

III. BLOCKCHAINS AND IoT
In [55], the authors make the case for a shift towards a
decentralized architecture for the ever-expanding IoT device
ecosystem to be sustainable. From the manufacturer’s side,
the current centralized model has a high maintenance cost –
consider the distribution of software updates to millions of
devices for years after they have been long discontinued.
From the consumer’s side, there is a justified [56] lack of
a trust in devices that ‘‘phone home’’ in the background
and a need for a ‘‘security through transparency’’ approach.
These issues can be solved with a scalable, trustless peer-to-
peer model that can operate transparently and distribute data
securely; the authors correctly point out that a blockchain
provides an elegant solution to this problem.

Consider the following setup to get an understanding of
how this could work. All the IoT devices of a manufacturer
operate on the same blockchain network. The manufacturer
deploys a smart contract that allows them to store the hash
of the latest firmware update on the network. The devices
either ship with the smart contract’s address baked into their
blockchain client, or they find out about it via a discovery
service (see Section IV). They can then query the contract,
find out about the new firmware, and request it by its hash via
a distributed peer-to-peer filesystem such as IPFS [57], [58].
The first requests for this file will be served by the man-
ufacturer’s own node (also taking part into the network),

but after the binary has propagated to enough nodes [59],
the manufacter’s node can stop serving it. Assuming the
devices are configured so as to share the binary they got,8

a device that joins the network long after the manufacturer
has stopped participating in it, can still retrieve the sought-
after firmware update and be assured that it is the right file.
This all happens automatically, without any user interaction.
Compare and contrast with the centralized scenario where the
device polls the manufacturer’s server for an update and gets
a 404 error [61].

Furthermore, a blockchain network where cryptocurrency
is exchanged provides a convenient billing layer and paves
the way for a marketplace of services between devices. In the
example above, devices that store a copy of the binary may
charge for serving it, in order to sustain their infrastructure
costs (or simply to make a profit). Other examples include:
Filecoin [62] which allows devices to ‘‘rent their disk space’’,
and 21 [63] and EtherAPIs [64], which make it possible to
monetize API calls – the caller needs to provide the necessary
micropayment (in Bitcoin or Ethereum respectively) before
requesting them.With a cryptocurrency in place, every device
can have its own bank account on the Internet; it can then
expose its resources to other devices (or users) and get com-
pensated for their usage via microtransactions [65].

This also facilitates the sharing of services and property
in general. Slock.it [66] works on smart electronic locks
(‘‘Slocks’’) that can be unlocked with a device that carries the
appropriate token. These tokens are bought on the Ethereum
blockchain [67], a public blockchain network optimized for
smart contracts that uses its own cryptocurrency, called Ether.
The owner of a Slock that wishes to rent their house or car sets
a price for timed access to that electronic door lock. An inter-
ested party can use a mobile app to identify the slock, pay
the requested amount in Ethers, then communicate with the
lock via a properly signed message (using the Whisper peer-
to-peer communication protocol [68]) to unlock it. Billing is
simplified by having all the Slocks operating on the same
blockchain.

Along the same theme, in the energy sector, the integra-
tion of IoT with blockchains allows for a peer-to-peer mar-
ket where machines can buy and sell energy automatically,
according to user-defined criteria. For example, TransAc-
tive Grid [69] is experimenting with the concept of a peer-
to-peer market for renewable energy in a neighborhood in
Brooklyn, NY [70]. Solar panels record their excess output
on the blockchain, and sell it to neighboring parties via smart
contracts.

The usefulness of blockchains in an IoT setting does not
stop there. Consider the typical supply chain example that is
used to highlight the value of a blockchain: a container that
leaves the manufacturer’s site (point A), gets transported via
railway to the neighboring port (point B), then gets shipped
to the destination port (point C), gets transported again to
the distributor’s facilities (point D), until it finally reaches

8For example, via a protocol such as ipfs-cluster [60].
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FIGURE 4. An asset tracking example using smart contracts and IoT. In Fig. 4a (left) a container leaves the
manufacturing plant (A), reaches the neighboring port (B) via railway, gets transported to the destination port (C),
and then to the distributor’s facilities (D), until it reaches the retailer’s site (E). In Fig. 4b (right), we focus on the
B-C stage. The carrier of the container performs a handshake with the dock at the destination port (C) to confirm
that the container is delivered to the expected location. Once that handshake is completed, it posts to a smart
contract to sign the delivery. The destination port follows along to confirm reception. If the node at C does not post
to the contract within an acceptable timeframe, the shipping carrier will know and can initiate an investigation on
the spot.

the retailer’s site (point E). This process involves several
stakeholders and checks along the way, all of them depicted
in Figure 4a. Each stakeholder usually maintains their own
database to keep track of the asset, which they update based
on inputs from the other parties along the chain. A blockchain
network though that is set up to track this asset would mean
that there is now one shared database to keep track of, where
updates comewith cryptographic verifiability, get propagated
along the network automatically, and create an auditable trail
of information. For example (Figure 4b), when the shipping
carrier reaches the destination port, they send a signed mes-
sage to a predetermined and agreed-upon smart contract to
allow everyone on the chain to know that the container is
now at point C. Since the transaction is signed, it acts a cryp-
tographically verifiable receipt of the shipping company’s
claim that the container has reached the destination port. The
receiver at the port posts to same smart contract to confirm
that it is in posession of the container.

Alternatively, this whole process can be done via atomic
peer-to-peer exchanges of tokens9 if the chain follows the Bit-
coin transacitonal model (Section II-C).When the blockchain
is created, the manufacturer is allowed to issue a ‘‘I have
the container’’ token; all the other stakeholders are allowed
to issue a ‘‘I have received the container’’ token. When the
manufacturer hands off the container to the freight transapor-
tation company that will move it from point A to point B,
it creates a transaction with two inputs and two outputs
(see Section II-C). Input #1 points to the manufacturer’s own
UTXO (the ‘‘I have the container’’ token) and output #1
creates a new UTXO that locks this token against the
transporter’s public key, effectively passing ownership to it.

9See Greenspan’s excellent primer on ‘‘delivery-versus-payment’’ and
how it is facilitated by blockchains [71].

Input #2 points to the transporter’s own UTXO (the ‘‘I have
received the container’’ token) and output #2 creates a new
UTXO that transfers that token to the manufacturer. The
manufacturer signs their part, then sends this incomplete
(and thus, non redeemable transaction to the transporter who
signs their own part, then pushes it to the blockchain. When
this transaction is added to blockchain, the manufacturer has
received the ‘‘I have received the container’’ token from the
transporter, and the transporter now holds the ‘‘I have the
container token’’. A similar atomic exchange will take place
at point B between the transporter and the shipping company,
until the retailer finally receives the ‘‘I have the container
token’’ at point E. At this point there is a complete, crypto-
graphically verifiable, timestamped trail that tracks the asset,
and leaves little room for dispute between the stakeholders as
to what happened.

The process described above is an upgrade over practices
of the past, and a testament to the usefulness of blockchains,
but it can be taken a step further and become fully automated
thanks to IoT. Assume that every stakeholder carries a smart
tracker with (a) a BLE radio, (b) a GSMor LTE radio so that it
can connect to the Internet, (c) an installed blockchain client.
A similar tracker is also mounted to the container. When the
two stakeholders meet and the container is also present, for
example at point A, the devices of the stakeholders can send
signed transactions to the blockchain automatically without
any user input, and the process can move to the next stage
as soon as the required tokens have been exchanged. In our
setup the BLE radio is needed so that the devices can tell when
they are in proximity of each other, and when that happens
they can transact on the blockchain via the Internet. This is
just one possible configuration out of many. Filament [72],
for instance, provides sensors with long-range radios called
‘‘Taps’’. Taps can form mesh networks, communicate with
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each other in a distributed and secure manner via a protocol
called telehash [73], and interact with each other via smart
contracts on a common blockchain. The sensors themselves
do not connect to the Internet to cut down on deployment
costs but can connect to gateway nodes that provide such
connectivity.

IV. DEPLOYMENT CONSIDERATIONS
In this section we identify several issues that may come up
when IoT makers experiment further with blockchains, and
have their IoT devices participate in a blockchain network.
We comment on possible ways to overcome these issues, or
highlight the ongoingwork that is being done to address them,
where applicable.

Compared to a properly configured centralized database,
a blockchain solution will generally underperform, result-
ing in lower transaction processing throughput and higher
latencies. We refer the reader to [40], which focuses on
the scalability aspect of consensus mechanisms, but also
touches upon the issue of performance. This problem is
particularly pronounced in public networks, where proof-of-
work mechanisms are deployed (see Section II-E and II-B
for more), although new proposals, such as Bitcoin-NG [74],
show promising results. In general, this performance hit is
the penalty paid for trustless decentralization and resiliency.
In a blockchain, each node performs the same task leaving no
room for parallel task execution, i.e. we do not have sharding.
This situation is even more pronounced in blockchains that
do smart contracts because of the concurrency issues noted
in Section II-E. Work towards shardability is being done for
at least onemajor blockchain platform [67], though aworking
and tested implementation is still ways off; see Ethereum
Improvement Proposal 105 [75].

Maintaining privacy on the blockchain is a complicated
issue. Recall that each participating device is identified by
their public key (or its hash). A participant does not need to
know everybody else’s key; they just need the key of their
transacting counterparty.10 However, all the transactions in
a blockchain happen in the open. By analyzing this data,
an interested party can identify patterns and create con-
nections between addresses, and in the end make informed
inferences about the actual identities behind them [76]–[79].
A couple of ways to mitigate –but not completely eliminate–
this issue, if privacy is important for the considered
application:

1) Have your device use a new key for every transac-
tion, or use a different key per transacting counter-
party, to make pattern identification difficult. Refer to
the BIP0032 standard on ‘‘hierarchical deterministic
wallets’’ on Bitcoin for instance [80], that allows the
derivation of an infinite number of public keys in a
manageable and safe manner. An issue with the ‘‘new
key for every transaction’’ method is that this new key

10Do note however that, in a private network, whoever maintains the
access list should know every member’s identity, otherwise vetting is not
possible.

has to be communicated to the interested counterparty
for every transaction; a potentially cumbersome and
time-consuming process.

2) In the case of private blockchains, it is advisable to not
use the same blockchain for all transactions if another
participant may get a competitive advantage by track-
ing your device’s activity. Minimize the exposure of
your device, by setting up blockchains only with those
entities it needs to collaborate with, and only use them
for these processes you want to collaborate on. This
admittedly increases the coordination cost compared to
a single blockchain for everything, but it is a necessary
trade-off for increased privacy. [24] provides a look
into methods of blockchain analysis and into ways to
prevent these analysis techniques from succeeding.

On the same note, transactional privacy (i.e. confidential-
ity) is also hard to attain, since the content of every transaction
is exposed to every node on the network, so that it can be
validated. As noted in [36], homomorphic encryption might
be oneway to tackle this; the Elements Alpha [81] experimen-
tal chain allows for confidential transactions using additively
homomorphic commitments [82]. Zero-knowledge proofs, a
cryptographic primitive that allows one party to prove to
another party the validity of a statement without revealing its
content, might be another; refer to the Hawk model [83] for
more info. These methods however are resource intensive so
their applicability on resource-constrainted IoT devicesmight
be limited. As in the case of maintining privacy, a blockchain
that is set up to serve a very specific process and is discarded
after that use might be an acceptable workaround.

Another issue to consider when deploying (or participat-
ing) in a blockchain network is deciding on (or examining)
the miner set. Recall (Section II-B) that while a miner cannot
fake a transaction or rewrite history, it can prevent a new,
valid transaction from being added to the blockchain, effec-
tively censoring it. The tolerance of a consensus mechanism
against Byzantine nodes is limited; if the number of miners
that conspire violates that threshold, the risk of transaction
censorship is severe. The nodes of the mining set need to be
selected wisely so that the chances of collusion between them
are minimized. In a private network, legal contracts should be
signed so that collusions are penalized appropriately.
Legal enforceability of smart contracts is limited. Work

is being done [84]) to make the technical rules of smart
contracts legally enforceable and binding to all parties. Until
then, what happens if, despite the verifiability of the whole
process, a transacting entity disputes the outcome of a smart
contract operation? A way to increase the chances of legal
enforceability is to include a reference to the actual real-world
contract in the smart contract, and vice versa. This is a pro-
cess called ‘‘dual integration’’ [85] and it works as follows:
(a) deploy the smart contract in question, record its address on
the blockchain, and include that address in the real contract
(b) hash the corresponding real-world contract, record its
hash digest, store the real contract in a safe space (can be
centralized, or decentralized [86]), (c) send a transaction to
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the smart contract that includes the real contract’s hash in its
metadata; the contract then stores that piece of information
in its own, internal database.11 In case of a legal dispute,
you can point to the hash stored in the smart contract, then
present the real-world contract (that is uniquely identified
by that hash) and prove the link between the actions on the
blockchain and the expected outcome in the physical world.
Refer to CommonAccord [87] and Legal Markdown [85];
both tools intend to make the creation of legal ‘‘real-world’’
and corresponding smart contracts possible, via the use of
templating systems.

Tangential to this is the issue of the expected value of
tokenized assets. Blockchains are used to trade these tokens
because they are associated with some value. However, if
your device assumes ownership of a token on the chain, and
you wish to redeem that token in the real world (e.g. receive
cash), what assurances do you have that this will happen?
In a blockchain that does not support smart contracts, dual
integration is not option. Maybe the answer lies in a similar
approach, that hashes a real-world contract and embeds this
hash as metadata on the token that is being traded (i.e. nota-
rization by hash [88]. At any rate, the participants need to
examine beforehand who stands behind the exchanged assets,
and assess the assurances they have about their value.
Complete Autonomy is a Double-Edged Sword: Before

deploying a smart contract on the chain, one should inspect
its logic carefully; they may also want to include fail-safe
mechanisms in the code to prevent dead-ends. As we noted in
Section II-D, we can have smart contracts (or DAOs) whose
overall behavior may change based on user input. Or there
may be a function that allows a priviledged user (identifiable
by their key) to destroy the deployed contract and remove
it from the blockchain’s distributed VM. However, if none
of these provisions are taken, we are dealing with a system
that can never be modified. This by itself may not be a bad
thing. If however some function on that contract is written
incorrectly, any interactions with it cannot be undone. As a
simple example, consider a smart contract that is supposed
to act as a deposit box on the chain. You can deposit funds
(units of a cryptocurrency) to it, and you can also withdraw
funds from it. Whoever deployed it on the blockchain did
not include any fail-safe measures, such as a ‘‘selfdestruct’’
function that would allow one to remove the contract and
collect its funds [89]. If the contract’s ‘‘withdraw’’ function
is written incorrectly (by mistake), any funds deposited in it
are irrevocably gone and cannot be recovered.

Finally, a blockchain network may also need the following
mechanisms to complement its functionality – these need to
be decentralized so as not to distort the network’s character:
• A DNS service that holds pointers to resources. Block-
stack [90], [91], for example, provides such a service
on the Bitcoin network. A user sends an appropriately-
encoded transaction on the Bitcoin blockchain to create

11This requires a smart contract with a properly-coded function that allows
an identifiable (via public key) user to store some data in the contract.

or modify a record on the Blockstack service.
Blockchain’s nodes filter the blockchain for sequences
of data that correspond to valid Blockstack transactions,
and use them tomodify their name database accordingly.

• Secure communication and file exchange. As we noted
above, messages in the blockchain are read by every
network participant. Whenever a private communication
channel is needed, a protocol such as telehash [73], [92]
or Whisper [68] should be used instead. The network’s
file-sharing needs may be addressed by a content-
addressed P2P file system such as IPFS [57], [86].

V. CONCLUSIONS
As we have demonstrated, the combination of blockchains
and IoT can be pretty powerful. Blockchains give us resilient,
truly distributed peer-to-peer systems and the ability to inter-
act with peers in a trustless, auditable manner. Smart con-
tracts allow us to automate complex multi-step processes.
The devices in the IoT ecosystem are the points of contact
with the physical world. When all of them are combined
we get to automate time-consuming workflows in new and
unique ways, achieving cryptographic verifiability, as well as
significant cost and time savings in the process.

We believe that the continued integration of blockchains in
the IoT domain will cause significant transformations across
several industries, bringing about new business models and
having us reconsider how existing systems and processes are
implemented.
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